Last updated: 2020-01-25
Checks: 7 0
Knit directory: peco-paper/
This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190814)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/npreg_trendfilter_quantile.Rmd
Untracked: code/suppfig09_?.R
Untracked: data/HumanLengESC.rds
Untracked: data/data_training_test/
Untracked: data/eset-filtered.rds
Untracked: data/fit.quant.rds
Untracked: data/fit.trend.perm.lowmiss.rds
Untracked: data/fit_diff_cyclone.rds
Untracked: data/fit_diff_oscope.rds
Untracked: data/fit_diff_peco.rds
Untracked: data/fit_diff_recat.rds
Untracked: data/fit_diff_seurat.rds
Untracked: data/intensity.rds
Untracked: data/log2cpm.quant.rds
Untracked: data/macosko-2015.rds
Untracked: data/ourdata_cyclone_NA18511.rds
Untracked: data/ourdata_cyclone_NA18855.rds
Untracked: data/ourdata_cyclone_NA18870.rds
Untracked: data/ourdata_cyclone_NA19098.rds
Untracked: data/ourdata_cyclone_NA19101.rds
Untracked: data/ourdata_cyclone_NA19160.rds
Untracked: data/ourdata_oscope_366genes.rda
Untracked: data/ourdata_peco_NA18511_top005genes.rds
Untracked: data/ourdata_peco_NA18855_top005genes.rds
Untracked: data/ourdata_peco_NA18870_top005genes.rds
Untracked: data/ourdata_peco_NA19098_top005genes.rds
Untracked: data/ourdata_peco_NA19101_top005genes.rds
Untracked: data/ourdata_peco_NA19160_top005genes.rds
Untracked: data/ourdata_phase_cyclone.rds
Untracked: data/ourdata_phase_seurat.rds
Untracked: data/ourdata_recat.rda
Untracked: data/sce-filtered.rds
Unstaged changes:
Modified: analysis/eval_on_our_data.Rmd
Modified: analysis/index.Rmd
Modified: code/fig2.R
Modified: code/fig3.R
Modified: code/fig4.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | fdebe2b | jhsiao999 | 2020-01-25 | code to compute prediction error in unthinned and thinned data |
Load packages
library(SingleCellExperiment)
library(peco)
library(ggplot2)
library(dplyr)
Prepare training/testing data
sce <- readRDS("data/sce-final.rds")
sce <- sce[grep("ENSG", rownames(sce)),]
fdata <- data.frame(colData(sce))
fdata <- data.frame(rowData(sce))
counts <- data.frame(assay(sce, "counts"))
sce_normed <- data_transform_quantile(sce)
log2cpm_quant <- assay(sce_normed, "cpm_quantNormed")
inds <- c("NA18511", "NA18855", "NA18870", "NA19098", "NA19101", "NA19160")
theta <- pdata$theta
# function to make training/testing data
makedata_supervised <- function(sce, log2cpm_quant,
theta) {
message("Create data/data_training_test folder \n")
if (!file.exists("data/data_training_test")) { dir.create("data/data_training_test") }
library(SingleCellExperiment)
library(peco)
pdata <- data.frame(colData(sce))
fdata <- data.frame(rowData(sce))
counts <- data.frame(assay(sce))
counts <- counts[grep("ENSG", rownames(counts)), ]
log2cpm <- t(log2(1+(10^6)*(t(counts)/pdata$molecules)))
for (ind in unique(pdata$chip_id)) {
ii_test <- c(1:nrow(pdata))[which(pdata$chip_id == ind)]
ii_train <- c(1:nrow(pdata))[which(pdata$chip_id != ind)]
pdata_test <- pdata[ii_test,]
pdata_train <- pdata[ii_train,]
log2cpm_quant_test <- log2cpm_quant[,ii_test]
log2cpm_quant_train <- log2cpm_quant[,ii_train]
theta <- pdata$theta
names(theta) <- rownames(pdata)
log2cpm_test <- log2cpm[,ii_test]
log2cpm_train <- log2cpm[,ii_train]
counts_test <- counts[,ii_test]
counts_train <- counts[,ii_train]
theta_test <- theta[ii_test]
theta_train <- theta[ii_train]
#sig.genes <- readRDS("output/npreg-trendfilter-quantile.Rmd/out.stats.ordered.sig.476.rds")
data_training <- list(theta_train=theta_train,
log2cpm_quant_train=log2cpm_quant_train,
log2cpm_train=log2cpm_train,
counts_train=counts_train,
pdata_train=pdata_train,
fdata=fdata)
data_test <- list(theta_test=theta_test,
log2cpm_quant_test=log2cpm_quant_test,
log2cpm_test=log2cpm_test,
counts_test = counts_test,
pdata_test=pdata_test,
fdata=fdata)
saveRDS(data_training,
file=file.path(paste0("data/data_training_test/ind_",ind,"_data_training.rds")))
saveRDS(data_test,
file=file.path(paste0("data/data_training_test/ind_",ind,"_data_test.rds")))
}
}
makedata_supervised(sce, log2cpm_quant, theta)
Prepare thinned data. We used R package seqgendiff
to thin the expression.
# function to make thinned data
makedata_thinned <- function(sce, thinlog2_rate) {
library(SingleCellExperiment)
library(peco)
pdata <- data.frame(colData(sce))
fdata <- data.frame(rowData(sce))
counts <- assay(sce)[grep("ENSG", rownames(sce)), ]
log2cpm <- t(log2(1+(10^6)*(t(counts)/pdata$molecules)))
# ---- thinning!
library(seqgendiff)
nsamp <- ncol(counts)
inputmat <- counts
thinlog2 <- rexp(nsamp, rate = thinlog2_rate)
outmat <- thin_lib(inputmat, thinlog2 = thinlog2)
counts_thin <- outmat$mat
dimnames(counts_thin) <- dimnames(counts)
libsize <- colSums(counts_thin)
keep_samples <- which(colMeans(counts_thin==0)>.01)
keep_genes <- which(rowMeans(counts_thin == 0 ) < .5)
counts_thin <- counts_thin[keep_genes, keep_samples]
libsize <- libsize[keep_samples]
log2cpm_thin <- t(log2(1+(10^6)*t(counts_thin)/libsize))
dimnames(log2cpm_thin) <- dimnames(counts_thin)
log2cpm_thin_quant <- do.call(rbind,
lapply(1:nrow(log2cpm_thin), function(i) {
qqnorm(log2cpm_thin[i,], plot.it = F )$x }) )
dimnames(log2cpm_thin_quant) <- dimnames(counts_thin)
saveRDS(list(counts_thin=counts_thin,
log2cpm_thin= log2cpm_thin,
log2cpm_thin_quant=log2cpm_thin_quant),
file=file.path(paste0("data/data_training_test/data_thinlog2_",
sprintf("%03d", 100*thinlog2_rate),".rds")))
pdata_thin <- pdata[keep_samples,]
for (i in 1:length(unique(pdata$chip_id))) {
ind <- unique(pdata_thin$chip_id)[i]
ii_test <- c(1:nrow(pdata_thin))[which(pdata_thin$chip_id == ind)]
counts_test <- counts[,ii_test]
counts_thin_test <- counts_thin[,ii_test]
log2cpm_thin_test <- log2cpm_thin[,ii_test]
log2cpm_thin_quant_test <- log2cpm_thin_quant[,ii_test]
data_thin_test <- list(counts_test=counts_test,
counts_thin_test=counts_thin_test,
log2cpm_thin_test=log2cpm_thin_test,
log2cpm_thin_quant_test=log2cpm_thin_quant_test)
saveRDS(data_thin_test,
file=file.path(paste0("data/data_training_test/ind_",ind,"_data_test_thinlog2_",
sprintf("%03d", 100*thinlog2_rate),".rds")))
}
}
makedata_thinned(sce, thinlog2_rate = .8)
makedata_thinned(sce, thinlog2_rate = .33)
Library size
data_thinlog2_033 <- readRDS("data/data_training_test/data_thinlog2_033.rds")
data_thinlog2_080 <- readRDS("data/data_training_test/data_thinlog2_080.rds")
# thin library size by a factor of 4.24
mean(colSums(data_thinlog2_033$counts_thin))/mean(colSums(counts))
mean(colSums(counts)/(1/.23))
mean(colSums(data_thinlog2_033$counts_thin))
1/.23
# thin library size by a factor of 2.2
mean(colSums(data_thinlog2_080$counts_thin))/mean(colSums(counts))
mean(colSums(counts)/(1/.45))
mean(colSums(data_thinlog2_080$counts_thin))
1/.45
Number of genes detected
top5genes <- c("ENSG00000170312","ENSG00000175063",
"ENSG00000131747", "ENSG00000198518", "ENSG00000197061")
inds <- unique(pdata$chip_id)
do.call(rbind, lapply(1:length(inds), function(i) {
ind <- inds[i]
samps <- rownames(pdata)[which(pdata$chip_id == ind)]
exp_tmp <- data_thinlog2_080$counts_thin[,colnames(data_thinlog2_080$counts_thin) %in% samps]
data.frame(ind = ind,
g_detect = min(rowMeans(exp_tmp > 0)),
g_detect_top50 = mean(rowMeans(exp_tmp[which(rownames(exp_tmp) %in% top5genes),] > 0)))
}))
do.call(rbind, lapply(1:length(inds), function(i) {
ind <- inds[i]
samps <- rownames(pdata)[which(pdata$chip_id == ind)]
exp_tmp <- data_thinlog2_033$counts_thin[,colnames(data_thinlog2_033$counts_thin) %in% samps]
data.frame(ind = ind,
g_detect = min(rowMeans(exp_tmp > 0)))
}))
do.call(rbind, lapply(1:length(inds), function(i) {
ind <- inds[i]
samps <- rownames(pdata)[which(pdata$chip_id == ind)]
exp_tmp <- counts[,colnames(counts) %in% samps]
data.frame(ind = ind,
g_detect = min(rowMeans(exp_tmp > 0)))
}))
Plot out properties of thinned data
# checking...
thing_080 <- readRDS("data/data_training_test/data_thinlog2_080.rds")
thing_033 <- readRDS("data/data_training_test/data_thinlog2_033.rds")
subsam <- do.call(rbind, list(data.frame(libsize=colSums(counts), thinlog2="1"),
data.frame(libsize=colSums(thing_080$counts_thin), thinlog2="080"),
data.frame(libsize=colSums(thing_033$counts_thin), thinlog2="033")))
subsam$thinlog2 <- factor(subsam$thinlog2,
levels=c("033", "080", "1"),
labels=c("4.4", "2.2", "1 (none)"))
ggplot(subsam, aes(x=thinlog2, y=libsize, group=thinlog2, fill=thinlog2)) +
geom_violin() +
geom_boxplot(width=.2, col="black") +
labs(fill="Thinning factor") +
ylab("Sample molecule count") +
xlab("Thinning factor")
subsam %>% group_by(thinlog2) %>% summarize(mn = mean(libsize), sd = sd(libsize))
fits_all <- readRDS("data/fit.quant.rds")
genes_all <- names(fits_all)[order(sapply(fits_all,"[[",3), decreasing=T)]
res_unthinned <- do.call(rbind, lapply(seq_along(unique(pdata$chip_id)), function(ind) {
ind <- unique(pdata$chip_id)[i]
res_thin_each <- do.call(rbind, lapply(2:50, function(ngenes) {
data_test <- readRDS(paste0("data/data_training_test/ind_",ind,"_data_test.rds"))
data_train <- readRDS(paste0("data/data_training_test/ind_",ind,"_data_training.rds"))
which_genes <- genes_all[1:ngenes]
fit_train <- cycle_npreg_insample(
Y = with(data_train,
log2cpm_quant_train[which(rownames(log2cpm_quant_train) %in% which_genes), ]),
theta = with(data_train, theta_train))
fit_test <- cycle_npreg_outsample(
Y_test=with(data_test,
log2cpm_quant_test[which(rownames(log2cpm_quant_test) %in% which_genes), ]),
sigma_est=with(fit_train, sigma_est),
funs_est=with(fit_train, funs_est))
diff_time <- circ_dist(data_test$theta_test,
rotation(data_test$theta_test, fit_test$cell_times_est))
out <- data.frame(phase_pred_rot=rotation(data_test$theta_test, fit_test$cell_times_est),
phase_ref=data_test$theta_test,
diff_time=diff_time,
ind = ind,
ngenes = ngenes)
return(out)
}) )
}) )
res_unthinned %>% group_by(ind, ngenes) %>%
# filter(ngenes <= 20) %>%
summarise(diff_mean = mean(diff_time/2/pi),
diff_se = sd(diff_time/2/pi)/sqrt(length(diff_time/2/pi))) %>%
ggplot(., aes(x=factor(ngenes), y=diff_mean, group = ind)) +
# geom_vline(xintercept=seq(5, 50,5)-1, col="gray90", lty=1) +
geom_hline(yintercept=seq(.1, .2, .01), col="gray90", lty=1) +
geom_line(aes(col=ind), lwd=.7) + # ggtitle("thinlog2 = .80") +
scale_fill_brewer(palette="Dark2") +
geom_errorbar(aes(ymin=diff_mean-diff_se,
ymax=diff_mean+diff_se, col=ind), width=.2, alpha=.5) +
stat_summary(fun.y=mean,geom="line",lwd=.5, group=1) +
ylim(0,.3) + geom_hline(yintercept=.25, col="red") +
labs(color="Test data (Cell line)") +
xlab("Number of cyclic genes used in peco prediction") +
ylab("Prediction error (% circle)") +
scale_x_discrete(breaks=c(2:50),
labels=c(rep("",3),5, rep("",4), 10, rep("",4), 15,
rep("",4), 20, rep("",4), 25,
rep("",4), 30, rep("",4), 35,
rep("",4), 40, rep("",4), 45, rep("",4), 50)) +
ggtitle("Performance in unthinned data")
Use peco predictors trained on unthinned data of samples from 5 individual cell lines to predict cell cycle phase in thinned data of samples from an individual not seen in training.
fits_all <- readRDS("data/fit.quant.rds")
genes_all <- names(fits_all)[order(sapply(fits_all,"[[",3), decreasing=T)]
res_thin_080 <- do.call(rbind, lapply(seq_along(unique(pdata$chip_id)), function(ind) {
ind <- unique(pdata$chip_id)[i]
res_thin_each <- do.call(rbind, lapply(2:50, function(ngenes) {
data_test <- readRDS(paste0("data/data_training_test/ind_",ind,"_data_test.rds"))
data_train <- readRDS(paste0("data/data_training_test/ind_",ind,"_data_training.rds"))
which_genes <- genes_all[1:ngenes]
fit_train <- cycle_npreg_insample(
Y = with(data_train,
log2cpm_quant_train[which(rownames(log2cpm_quant_train) %in% which_genes), ]),
theta = with(data_train, theta_train))
data_thin_test_080 <- readRDS(paste0("data/data_training_test/ind_",
ind, "_data_test_thinlog2_080.rds"))
fit_test_080 <- cycle_npreg_outsample(
Y_test=with(data_thin_test_080,
log2cpm_thin_quant_test[which(rownames(log2cpm_thin_quant_test) %in% which_genes), ]),
sigma_est=with(fit_train, sigma_est),
funs_est=with(fit_train, funs_est))
diff_time <- circ_dist(data_test$theta_test,
rotation(data_test$theta_test, fit_test_080$cell_times_est))
out <- data.frame(phase_pred_rot=rotation(data_test$theta_test, fit_test$cell_times_est),
phase_ref=data_test$theta_test,
diff_time=diff_time,
ind = ind,
ngenes = ngenes)
return(out)
}) )
}) )
res_thin_033 %>% group_by(ind, ngenes) %>%
# filter(ngenes <= 20) %>%
summarise(diff_mean = mean(diff_time/2/pi),
diff_se = sd(diff_time/2/pi)/sqrt(length(diff_time/2/pi))) %>%
ggplot(., aes(x=factor(ngenes), y=diff_mean, group = ind)) +
# geom_vline(xintercept=seq(5, 50,5)-1, col="gray90", lty=1) +
geom_hline(yintercept=seq(.1, .2, .01), col="gray90", lty=1) +
geom_line(aes(col=ind), lwd=.7) + # ggtitle("thinlog2 = .80") +
scale_fill_brewer(palette="Dark2") +
geom_errorbar(aes(ymin=diff_mean-diff_se,
ymax=diff_mean+diff_se, col=ind), width=.2, alpha=.5) +
stat_summary(fun.y=mean,geom="line",lwd=.5, group=1) +
ylim(0,.3) + geom_hline(yintercept=.25, col="red") +
labs(color="Test data (Cell line)") +
xlab("Number of cyclic genes used in peco prediction") +
ylab("Prediction error (% circle)") +
scale_x_discrete(breaks=c(2:50),
labels=c(rep("",3),5, rep("",4), 10, rep("",4), 15,
rep("",4), 20, rep("",4), 25,
rep("",4), 30, rep("",4), 35,
rep("",4), 40, rep("",4), 45, rep("",4), 50)) +
ggtitle("Performance in data thinned by a factor of 2.2")
res_thin_033 <- do.call(rbind, lapply(seq_along(unique(pdata$chip_id)), function(ind) {
ind <- unique(pdata$chip_id)[i]
res_thin_each <- do.call(rbind, lapply(2:50, function(ngenes) {
data_test <- readRDS(paste0("data/data_training_test/ind_",ind,"_data_test.rds"))
data_train <- readRDS(paste0("data/data_training_test/ind_",ind,"_data_training.rds"))
which_genes <- genes_all[1:ngenes]
fit_train <- cycle_npreg_insample(
Y = with(data_train,
log2cpm_quant_train[which(rownames(log2cpm_quant_train) %in% which_genes), ]),
theta = with(data_train, theta_train))
data_thin_test_033 <- readRDS(paste0("data/data_training_test/ind_",
ind, "_data_test_thinlog2_033.rds"))
fit_test_033 <- cycle_npreg_outsample(
Y_test=with(data_thin_test_033,
log2cpm_thin_quant_test[which(rownames(log2cpm_thin_quant_test) %in% which_genes), ]),
sigma_est=with(fit_train, sigma_est),
funs_est=with(fit_train, funs_est))
diff_time <- circ_dist(data_test$theta_test,
rotation(data_test$theta_test, fit_test_033$cell_times_est))
out <- data.frame(phase_pred_rot=rotation(data_test$theta_test, fit_test$cell_times_est),
phase_ref=data_test$theta_test,
diff_time=diff_time,
ind = ind,
ngenes = ngenes)
return(out)
}) )
}) )
res_thin_033 %>% group_by(ind, ngenes) %>%
# filter(ngenes <= 20) %>%
summarise(diff_mean = mean(diff_time/2/pi),
diff_se = sd(diff_time/2/pi)/sqrt(length(diff_time/2/pi))) %>%
ggplot(., aes(x=factor(ngenes), y=diff_mean, group = ind)) +
# geom_vline(xintercept=seq(5, 50,5)-1, col="gray90", lty=1) +
geom_hline(yintercept=seq(.1, .2, .01), col="gray90", lty=1) +
geom_line(aes(col=ind), lwd=.7) + # ggtitle("thinlog2 = .80") +
scale_fill_brewer(palette="Dark2") +
geom_errorbar(aes(ymin=diff_mean-diff_se,
ymax=diff_mean+diff_se, col=ind), width=.2, alpha=.5) +
stat_summary(fun.y=mean,geom="line",lwd=.5, group=1) +
ylim(0,.3) + geom_hline(yintercept=.25, col="red") +
labs(color="Test data (Cell line)") +
xlab("Number of cyclic genes used in peco prediction") +
ylab("Prediction error (% circle)") +
scale_x_discrete(breaks=c(2:50),
labels=c(rep("",3),5, rep("",4), 10, rep("",4), 15,
rep("",4), 20, rep("",4), 25,
rep("",4), 30, rep("",4), 35,
rep("",4), 40, rep("",4), 45, rep("",4), 50)) +
ggtitle("Performance in data thinned by a factor of 4.3")
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] dplyr_0.8.0.1 ggplot2_3.2.1
[3] peco_0.99.6 SingleCellExperiment_1.4.1
[5] SummarizedExperiment_1.12.0 DelayedArray_0.8.0
[7] BiocParallel_1.16.0 matrixStats_0.55.0
[9] Biobase_2.42.0 GenomicRanges_1.34.0
[11] GenomeInfoDb_1.18.1 IRanges_2.16.0
[13] S4Vectors_0.20.1 BiocGenerics_0.28.0
loaded via a namespace (and not attached):
[1] viridis_0.5.1 genlasso_1.4
[3] viridisLite_0.3.0 foreach_1.4.4
[5] DelayedMatrixStats_1.4.0 assertthat_0.2.1
[7] vipor_0.4.5 GenomeInfoDbData_1.2.0
[9] yaml_2.2.0 pillar_1.3.1
[11] backports_1.1.2 lattice_0.20-38
[13] glue_1.3.0 digest_0.6.20
[15] promises_1.0.1 XVector_0.22.0
[17] colorspace_1.3-2 plyr_1.8.4
[19] htmltools_0.3.6 httpuv_1.4.5
[21] Matrix_1.2-17 pkgconfig_2.0.3
[23] zlibbioc_1.28.0 purrr_0.3.2
[25] mvtnorm_1.0-11 scales_1.0.0
[27] HDF5Array_1.10.1 whisker_0.3-2
[29] later_0.7.5 pracma_2.2.9
[31] git2r_0.26.1 tibble_2.1.1
[33] conicfit_1.0.4 withr_2.1.2
[35] lazyeval_0.2.1 magrittr_1.5
[37] crayon_1.3.4 evaluate_0.12
[39] fs_1.3.1 doParallel_1.0.14
[41] MASS_7.3-51.1 beeswarm_0.2.3
[43] geigen_2.3 tools_3.5.1
[45] scater_1.10.1 stringr_1.3.1
[47] Rhdf5lib_1.4.3 munsell_0.5.0
[49] compiler_3.5.1 rlang_0.4.0
[51] rhdf5_2.26.2 grid_3.5.1
[53] RCurl_1.95-4.11 iterators_1.0.12
[55] circular_0.4-93 igraph_1.2.2
[57] bitops_1.0-6 rmarkdown_1.10
[59] boot_1.3-20 gtable_0.2.0
[61] codetools_0.2-15 reshape2_1.4.3
[63] R6_2.4.0 gridExtra_2.3
[65] knitr_1.20 workflowr_1.6.0
[67] rprojroot_1.3-2 stringi_1.2.4
[69] ggbeeswarm_0.6.0 Rcpp_1.0.3
[71] tidyselect_0.2.5
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] dplyr_0.8.0.1 ggplot2_3.2.1
[3] peco_0.99.6 SingleCellExperiment_1.4.1
[5] SummarizedExperiment_1.12.0 DelayedArray_0.8.0
[7] BiocParallel_1.16.0 matrixStats_0.55.0
[9] Biobase_2.42.0 GenomicRanges_1.34.0
[11] GenomeInfoDb_1.18.1 IRanges_2.16.0
[13] S4Vectors_0.20.1 BiocGenerics_0.28.0
loaded via a namespace (and not attached):
[1] viridis_0.5.1 genlasso_1.4
[3] viridisLite_0.3.0 foreach_1.4.4
[5] DelayedMatrixStats_1.4.0 assertthat_0.2.1
[7] vipor_0.4.5 GenomeInfoDbData_1.2.0
[9] yaml_2.2.0 pillar_1.3.1
[11] backports_1.1.2 lattice_0.20-38
[13] glue_1.3.0 digest_0.6.20
[15] promises_1.0.1 XVector_0.22.0
[17] colorspace_1.3-2 plyr_1.8.4
[19] htmltools_0.3.6 httpuv_1.4.5
[21] Matrix_1.2-17 pkgconfig_2.0.3
[23] zlibbioc_1.28.0 purrr_0.3.2
[25] mvtnorm_1.0-11 scales_1.0.0
[27] HDF5Array_1.10.1 whisker_0.3-2
[29] later_0.7.5 pracma_2.2.9
[31] git2r_0.26.1 tibble_2.1.1
[33] conicfit_1.0.4 withr_2.1.2
[35] lazyeval_0.2.1 magrittr_1.5
[37] crayon_1.3.4 evaluate_0.12
[39] fs_1.3.1 doParallel_1.0.14
[41] MASS_7.3-51.1 beeswarm_0.2.3
[43] geigen_2.3 tools_3.5.1
[45] scater_1.10.1 stringr_1.3.1
[47] Rhdf5lib_1.4.3 munsell_0.5.0
[49] compiler_3.5.1 rlang_0.4.0
[51] rhdf5_2.26.2 grid_3.5.1
[53] RCurl_1.95-4.11 iterators_1.0.12
[55] circular_0.4-93 igraph_1.2.2
[57] bitops_1.0-6 rmarkdown_1.10
[59] boot_1.3-20 gtable_0.2.0
[61] codetools_0.2-15 reshape2_1.4.3
[63] R6_2.4.0 gridExtra_2.3
[65] knitr_1.20 workflowr_1.6.0
[67] rprojroot_1.3-2 stringi_1.2.4
[69] ggbeeswarm_0.6.0 Rcpp_1.0.3
[71] tidyselect_0.2.5