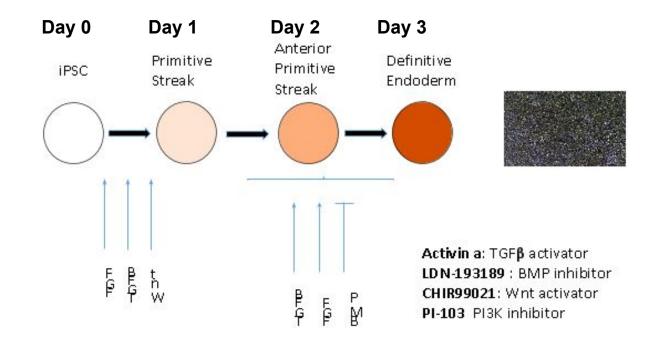
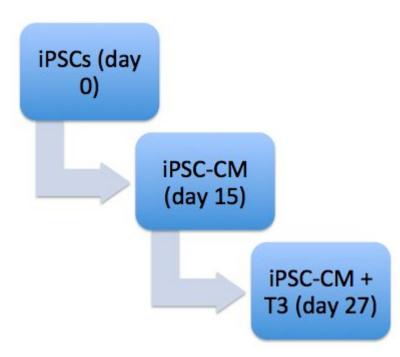
Analysis of RNA-seq data from time series experiments

Joyce Hsiao and Lauren Blake Gilad and Lynch lab meeting July 6, 2016

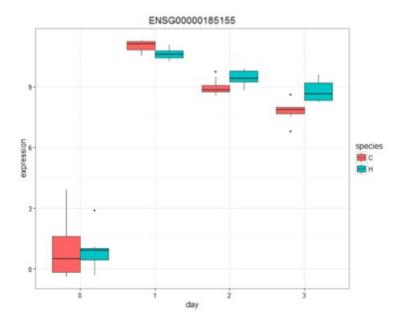

iPSC differentiation into endoderm: experimental design

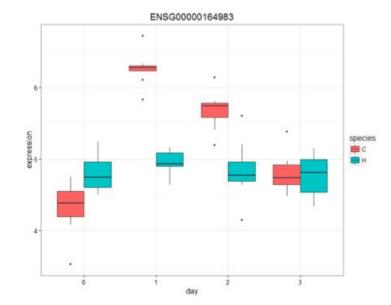
4 chimpanzees, all replicated once

6 Humans, 2 are replicated once



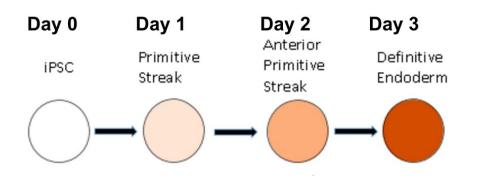
Sammy Thomas


Characterizing gene expression patterns of human and chimpanzee iPSC-CM: Experimental design



Motivating questions: Local and global trends

Sammy Thomas


Modelling time series data

Concerns

- 1. Repeated measurements
 - a. Correlation between time points: specific to individual?
 - b. Patterns of change over time: linear or polynomial? Discrete or continuous?
- 2. Fixed versus random effect
- 3. Specific to our design
 - a. Often small number of individuals, multiple replicates per individuals, and small number of time points

Fixed versus random effects: inference

- Fixed effect: the selected timepoints or conditions are <u>fixed</u>
- Random effect: the selected timepoints or conditions are a <u>random subset</u> of a larger population, therefore the inference can be extended beyond the timepoints or conditions in the current study



Are the repeated measurements a random subset of the developmental process?

Fixed versus random effects: correlation

Random effect allows the modelling of correlation between timepoints or between replicates of the same individuals

Three possible correlation structures between replicates/timepoints

- 1. Correlations between all time points are different.
- # of parameters = t(t+1)/2 2. Parameters = 2 2.
- 1. Same correlation between all time points

- 1. Exponential increase in correlation over time.
- 2 Parameters = 2

Analysis strategy

Example: Human vs. Chimp X 3 Timepoints

- 1. Evaluate both global and local trend
- 2. Start with fixed effect model, evaluate residual assumptions, add random effects
- 3. Compare mixed models: Bayesian Information Criteria (BIC)

All can be done in limma, except for the model comparison!

Starting model: fixed effects

Log2 expression = species + day + species X day

Global trends: significant interaction of species and day

Local trends: contrast test

Fixed effects + individual random

```
dupcor <- duplicateCorrelation(y, design, block = block)
fit_cor <- lmFit(y, designMatrix, block = block, correlation = dupcor$consensus)</pre>
```

For every gene, block matrix describes the sample relatedness

	Human1, T1	Human1, T2	Human1, T3	Chimp1, T1	Chimp1, T2	Chimp1, T3
Human1, time1	1	1	1	0	0	0
Human1, time2	1	1	1	0	0	0
Human1, time3	1	1	1	0	0	0
Chimp1, time1	0	0	0	1	1	1
Chimp2, time2	0	0	0	1	1	1
Chimp3, tim3	0	0	0	1	1	1

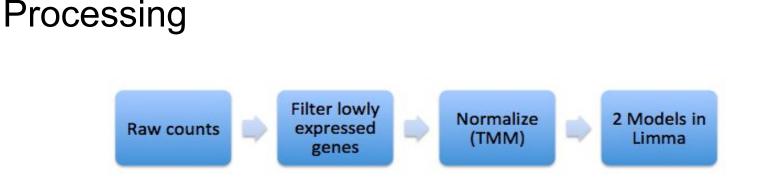
Fixed effects + time random

dupcor <- duplicateCorrelation(y, design, block = block)
fit_cor <- lmFit(y, designMatrix, block = block, correlation = dupcor\$consensus)</pre>

For every gene, block matrix describes the sample relatedness

	Human1, T1	Human1, T2	Human1, T3	Chimp1, T1	Chimp1, T2	Chimp1, T3
Human1, time1	1	0	0	1	0	0
Human1, time2	0	1	0	0	1	0
Human1, time3	0	0	1	0	0	1
Chimp1, time1	1	0	0	1	0	0
Chimp2, time2	0	1	0	0	1	0
Chimp3, tim3	0	0	1	0	0	1

Model selection


- Evaluate residuals: are the residuals correlated with predictor variable, such as time?
- Model fitness criteria such as Bayesian Information Criteria

Pipeline for fitting models

Example data: time series RNA-seq data from yeast (Leong et al 2014)

library("fission") on Bioconductor

Strain	Time points (minutes)	Biological replicates
WT and del of aft1	0, 15, 30, 60, 120, 180	3/strain

2 models:

- 1) Log2 Expression = Strain + Time + Strain*Time
- 2) Log2 Expression = Strain + Time + Strain*Time + Individual (random)

Fixed effect model

1) Design matrix

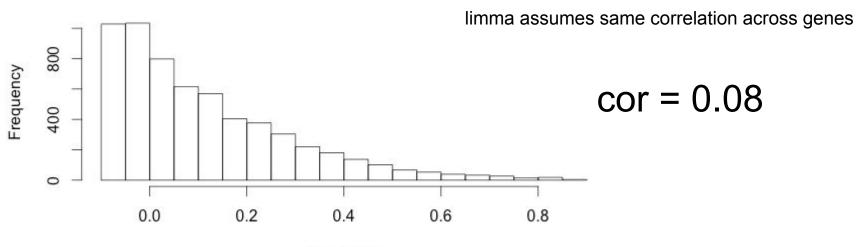
design_all <- model.matrix(~ strain + minute + strain*minute, data = strains)</pre>

2) Voom for gene expression

3) LMfit

4) **Diagnostics**

Checking for homoskedastity


There is an assumption of linear models that the variance is the same for all x's. Can check that there's random scatter aka no fanning with a residual plot.

Cor(residuals, values for explanatory variable)

Correlations between replicates (repeated measurements)

cpm.voom <- voom(design_all, normalize.method="none", plot=T)</pre>

corfit <- duplicateCorrelation(cpm.voom\$E, design_all, block=strains\$replicate)</pre>

Correlation

Re-run voom

Re-run voom with blocking and correlation specified ()

fit1 <- ImFit(cpm.voom\$E, design_all, block=strains\$replicate, correlation= corfit\$consensus)

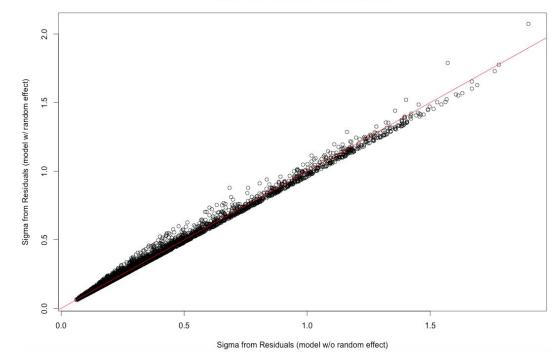
Modified t-statistic and degrees of freedom

Comparison of the 2 models

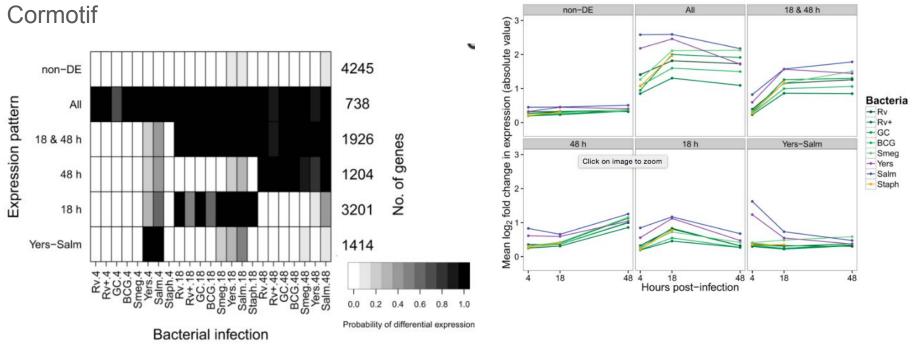
No random variable

##		logFC	AveExpr	t	P.Value	adj.P.Val
##	SPCC70.08c	1.3905768	2.4174953	5.225025	1.852789e-05	0.09264082
##	SPNCRNA.1457	-1.1654550	3.3659116	-5.032770	3.075214e-05	0.09264082
##	SPBC2F12.09c	1.7088389	1.5162066	4.232133	2.542675e-04	0.44744302
##	SPNCRNA.184	2.4995601	-1.3277111	4.096002	3.633343e-04	0.44744302
##	SPBCPT2R1.08c	-1.9911625	0.1929998	-4.087691	3.713220e-04	0.44744302
##	SPCC1235.02	0.3053335	6.8080988	3.730911	9.383816e-04	0.90783243
##	SPCC1672.03c	0.4401719	5.8348015	3.685501	1.054743e-03	0.90783243
##	SPAC21E11.04	0.5627842	3.6957647	3.594411	1.332242e-03	0.99737734
##	SPAP8A3.12c	-0.2954698	6.8119612	-3.506295	1.667857e-03	0.99737734
##	SPNCRNA.863	1.2725884	2.1707604	3.484012	1.764985e-03	0.99737734

With Random Variable


##		logFC	AveExpr	t	P.Value	adj.P.Val
##	SPCC70.08c	1.3905768	2.4174953	5.475298	9.622458e-06	0.05797531
##	SPNCRNA.1457	-1.1654550	3.3659116	-5.080355	2.717013e-05	0.08185003
##	SPBCPT2R1.08c	-1.9911625	0.1929998	-4.539349	1.133413e-04	0.22762719
##	SPBC2F12.09c	1.7088389	1.5162066	4.378320	1.732892e-04	0.26101685
##	SPNCRNA.184	2.4995601	-1.3277111	4.165733	3.029777e-04	0.36508807
##	SPCC1235.02	0.3053335	6.8080988	3.932766	5.567882e-04	0.55910814

The SD of the residuals in model w/o random effect > with random effect


fit <- ImFit(voom_gene_expression_matrix, design_matrix)</pre>

no_random_residuals <- fit\$sigma</pre>

Sigma of the Residuals for Both Models

Clustering: showing common patterns in different genes

Blischak et al. 2015

Summary

- Assess global and local trends in time series experiments
- Use *limma* to perform significant testing and diagnostics
- Visualize change patterns across time

How to pick a covariance structure?

call of ucsellocu III a faili	y munity manner	, mough as we it see me	y can be ver	y similar to one another.

Structure	Description	# of Parameters	{i,j}th element	
AR(1)	Autoregressive(1)	2	$\sigma_{ij} = \sigma^2 ho^{ i-j }$	
CS	Compound Symmetry	2	$\sigma_{ij} = \sigma_1 + \sigma^2 \mathbf{l}(i=j)$	
UN	Unstructured	t(t+1)/2	$\sigma_{ij} = \sigma_{ij}$	
TOEP	Toeplitz	t	$\sigma_{ij} = \sigma_{ i-j +1}$	
VC	Variance Components	q	$\sigma_{ij} = \sigma_k^2 \mathbf{l}(i=j)$ and <i>i</i>	
			corresponds to the <i>k</i> th effect	
ARH(1)	Heterogeneous AR(1)	t+1	$\sigma_{ij} = \sigma_i \sigma_j \rho^{ i-j }$	
CSH	Heterogeneous CS	t+1	$\sigma_{ij} = \sigma_i \sigma_j [\rho l(i \neq j) + l(i = j)]$	
ТОЕРН	Heterogeneous TOEP	2t-1	$\sigma_{ij} = \sigma_i \sigma_j \rho_{ i-j }$	