Collaborating on GitHub

Stephens lab meeting
Joyce Hsiao
2015-12-03

We work as a team

o

Method beta

Super awesome paper

>

Method 1.0

Manuscript

NG

Teammate B

Teammate A

Before GitHub...

BB ArchiveResults Results up-to-date

code Zia
codes

data

, Results, beta version
figs \

figure \
package ‘

preprocessing_flowchart R codes

rdas

results
. R codes from collaborator
results_archive

DEanalysisOld.html
resultsOld.html Input files

| (@) [®,

backgroundnotes_06SEP2014

figures Interim R objects

BT

preprocessing_flowchart
supplementary_materials
compareNormalization_riboProtein.pdf

b a

\KE

compareNormalization_riborna.pdf

Recommended layout () ihsia0999/ashlar

1 Analysis (ALL Rmarkdown files and htmls)

d Figure (exported directly by user or as a by-product of
Rmarkdown files)

d Output (R objects, work-in-progress analysis results)

d Code (bash scripts, fresh R functions, or R
functions that may not contribute to method
development)

] Data (data that do not change frequently over the
course the analysis, such as read count or
phenotype information)

1 Docs (method drafts, slides, etc.)

A workflow that works!

John Blischak says:

|. “Everything” goes into GitHub repo
2. Create a project website hosted on GitHub

https://github.com/jdblischak/singleCellSeq

Brief guide for first-timers

Making a project directory
Making htmls

Producing the website

. Publishing the website
Add new analysis

Where | learned about this:

mooOwr>

A. Making a project directory

|. Clone ashlar and rename the repository

git clone https://github.com/jhsiao0999/ashlar.git ashlar-trial

2. Open ashlar.Rproj (R project object) in the analysis
directory. Once you do so, working directory of the
current R session becomes ashlar-trial/analysis. No
more specifying user-specific home directory. This is
especially when working on collaborative projects.

3. Add your project information:
» analysis/About.Rmd (project description)
* analysis/Index.Rmd (homepage for the website)
« analysis/License.Rmd (my default is Creative Common)
* analysis/Template.Rmd (an example Rmarkdown template)
- ashlar/README.md (github repo README)
* ashlar/analysis/include/before body.html (webpage header)

A. Making a project directory

4. Look at your .gitignore

By default, all image files (png, pdf, etc.) and htmls are
ignored in git add.We chose this to keep the master
branch consist of only analysis files. Under this setup, you
must force add (git add —f) in the first commit to the
master branch and “every commit” to the gh-pages
branch.

B. Making htmls

|. Run make command, which makes all changed Rmds.

cd ashlar-trial/anaysis
make

To force make htmls for all of the Rmds,

cd ashlar-trial/anaysis
make -B

2. Use knitr to compile Rmds into html files. If you work
with RStudio, simply click on “knit html” in the tool bar.

B. Setting up GitHub repo

1. Reset git remote directory.

git remote rm origin
git remote add origin https:/github.com/jhsia0999/ashlar-trial.git

2. Go to to github.com. Create a repo called ashlar-trial.
Then, commit all files

git add --all
git commit —m “first commit”
git push origin master

C. Producing the website (not publishing)
Approach I:

Index.html is the table of content of your repository and
contains hyperlinks to the listed content.You can use it as a
TOC for your folder without ever publishing it. When
published, index.html is the homepage of your webiste.

Approach 2: Use Jekyll

1. Setting up Jekyll pipeline. Here | assume you already have Ruby.

cd analysis

make

bundle exec jekyll serve
Localhost:4000

2. Producing the website

cd analysis
sudo gem install bundler
bundle install

D. Publishing website

Deploy to gh-pages.

git checkout gh-pages
git add —f .

git commit —m “build site”
git push origin gh-pages

Give it a minute, then wala!

https://jhsiao999.github.io/ashlar-trial

E. Add new analysis

If you’ve been working in the gh-pages branch,

git branch

cd analysis

git add —f *html figures/*

git commit —m “add new analysis”
git push origin gh-pages

Push the master branch to the gh-branches, run Make file and
then push the updates to the gh-branches:

git checkout gh-pages
git merge master

cd analysis
make
git add --all

git commit —m “build site”
git push origin gh-pages

E. Add new analysis

If you’ve been working in the gh-pages branch,

git branch

cd analysis

git add —f *html figures/*

git commit —m “add new analysis”
git push origin gh-pages

Then to update the master branches with the changes, do

git checkout master

git merge gh-pages

git add *Rmd

git commit —m “add new analysis”
git push origin master

Likewise, if you work at the master branch, update the gh-pages branch
when finished.

A useful Git tip

If > 1 person contributes to the repo on a regular basis,

do the following to avoid disasters!

git checkout work-branch ## move the pointer to local work branch
git add new_edits

git commit -m "new_edits"

git push origin work-branch ## push edits to remove work branch

At this point, you can make a merge and a pull request to review the edits

git checkout master ## move the pointer to local master

git pull origin master #i# fetch and merge remote master to local master

git merge work-branch ## merge local work-branch into master and update master
git checkout work-branch ## move to local work-branch

git merge master ## merge remote master to local work-branch

git push origin work-branch ## move the pointer back to local work-branch

#i## At this point, the commit numbers of your work-branch and master should be the samel!!!!lllI1111I1I1ILTTL]

https://github.com/jhsiac999/singleCell-method#collaborating-on-the-project e

Other tips

You don't have write permissions for the /Library/Ruby/Gems/
2.0.0 directory.

sudo gem update --system

